\square 0 10 2π

\square

Cicuit primaire

Cicuit secondaire

Un bobinage sous tension crée un champs magnétique. On forme ainsi un électro aimant

Si primaire et secondaire sont reliés par des tôles fines le champs magnétique se transmet au secondaire

Il n'y a pas de laison électrique entre primaire et secondaire cet aspect est parfois rechercher pour des raisons de sécurité.

On parle de transformateur d'isolement.

On constate que primaire et secondaire n'ont pas le même

Cicuit primaire
Cicuit secondaire 220 V AC $\longrightarrow 24$ V AC

Transformateur abaisseur. La nature du courant ne change pas

La réversibilté n'est pas complète à cause des pertes il faut utiliser des transformateurs compensés.

Réversibilité compensée

Cicuit primaire
Cicuit secondaire

220 V DC

24 V DC
\square Transformateur éleveur de tension. La nature du courant ne change pas

Protections

Protection par mise à la terre pour transfos de classe \mathbf{O} et 1

L1

L2

La carcasse métallique peut être mise sous tension. une connexion est prévue pour la mise à la terre
interdit pour les transformateurs de classe 2 (double isolation)

Transfos de classe 0 :
en plus de la protection mise à la terre ils doivent être utilisé sous enveloppe.

Comme en vélo au démarrage il faut fournir une énergie plus grande au démarrage.

protection par fusible type $\mathbf{a M}$

les constructeurs donnent des tableaux de valeurs

Cicuit primaire

Disjoncteur type U réglé à 6 In Disjoncteur type D réglé à 15 In

La protection du primaire se calcule uniquement en fonction du risque de courcircuit

Cicuit primaire

Surcharge: protection totale
Court circuit la protection doit fonctionner

L1

L2
L3
\mathbf{N}
PE

au bout de 5 secondes

Fusible gl

Disjoncteurs type U ou L (Legrand)

Schématisation

Cicuit primaire

Cicuit secondaire

220 V
Solution la plus courante

Auto-transformateur

Primaire

> Danger ily a un point commun entre le primaire et le secondaire Il se peut que ce soit une phase.

Branchements

plus la tension est élevée au primaire
plus elle utilise une grande longueur de bobinage = plus grande résistance

En cas de doute:
transfo inconnu, mesurer à l'ohmmêtre la résistance

Est-il normal qu'un transformateur chauffe?

OUI car il se comporte comme une résitance

```
Attention aux brûlures:
les transformateurs ont une température qui peut atteindre \(90^{\circ}\) à \(180^{\circ}\) un transformateur de classe \(H\) peut monter jusqu'à \(180^{\circ}\) en fonctionnement normal.
```


Elle s'exprime en VA (Volts x Ampères)

qui correspond aux valeurs nominales de: tension, fréquences, intensité, cos =1 c^{\prime} est à dire des valeurs théoriques.

Puissance réelle d'un transformateur:

Elle dépend de l'installation concernée notemment du cos
Elle s'exprime en watt.

$$
\mathbf{P}_{\text {watt }}=\mathbf{P}_{\mathrm{VA}} \mathrm{x} \cos
$$

Machines étrangères

Peut -on utiliser un transformateur 50 Hz sur un circuit 60 Hz ?

OUi mais cela change les valeurs : pertes, puissance ... Mais il n'y a aucune incidence sur le fonctionnement.

A quoi sert une prise de réglage?

Le réseau n'est pas toujours à la tension théorique 210 V au lieu de 220 V . Certains systèmes ont besoin d'une tension précise.

Certains transformateurs permettent donc de s'adapter sur le primaire à la tension du réseau (ajout ou retrait de spires).

Exemples :
un réseau de 237 V la borne +15 est la plus proche valeur un réseau de 203 V la borne - $\mathbf{1 5}$ est la plus proche valeur

Couplage des sorties secondaires

Production

Couplage des sorties secondaires

Dysfonctionnements

- Le transformateur fume et dégage une odeur de "chimique"
- Chute de tension supérieure à $\mathbf{3} \%$ au secondaire
- Défaut d'isolement: carcasse métallique / enroulements. Mesure au méghommêtre
- Le liquide de refroidissement des gros transformateurs est souvent toxique: pyralène. attention aux intoxications, pollution. Ne pas les jetter mais les faire retraiter par des sociétés spécialisées.
- Les transfo contiennent beaucoup de cuivre métal qui coûte cher et qui est souvent récupéré
- Attention aux courant d'extra rupture. Décharge de fort courant donnée par un enroulemer lorsqu'on coupe la tension.
- Utiliser des appareils protégés et aux normes.

Pour sortir Action sur la touche
Echap
\square \square

