

Non piloté

Piloté

équilibre du tiroir

équilibre du tiroir

On connait:

équilibre du tiroir

Force du ressort

$F B=40 \times 1,5=60 \mathrm{DaN} \quad 3$ daN

Chercher la valeur de Px

$F B=100 \times 1,5$
$F R=3 \mathrm{DaN}$

$$
\begin{aligned}
\mathrm{FB}+\mathrm{FR} & =\mathrm{FB}_{\text {résul }} \\
& =150+3=\underline{153 \mathrm{DaN}}
\end{aligned}
$$

$$
\mathrm{PA}=40 \text { bars }
$$

$$
\mathrm{SA}=1 \mathrm{~cm} \mathbf{2}
$$

$$
\mathrm{FA}=40 \times 1=40 \mathrm{DaN}
$$

$$
F X=153-40=113 \mathrm{DaN}
$$

$$
P=\frac{F}{S}
$$

passage du fluide

Aucun passage du fluide

1000 kg

$F=m g$
$F=1000 \mathrm{~kg} \mathrm{x} 1=1000 \mathrm{DaN}$

$S=50 \mathrm{~cm} 2$

$$
P=\frac{F}{S}=\frac{1000}{50}=\underline{20 \mathrm{bars}}
$$

Force exercée par la chambre sur le clapet ou force de devérouillage

$$
F=P \times S=20 \times 1=20 \mathrm{DaN}
$$

Pression de pilotage:

$$
P=\frac{F}{S}=\frac{20}{3}=\underline{6,33 \mathrm{bars}}
$$

Lorsque le clapet s'ouvre : le vérin rentre

équilibre du clapet

$$
\begin{aligned}
\mathrm{P} 3 & =\mathrm{P} 2 \\
10 \times \mathrm{P} 2 & =5 \times \mathrm{P} 1+\mathrm{F} \\
10 \times \mathrm{P} 2 & =5 \times 100+\mathbf{8 0 0}
\end{aligned}
$$

$$
\mathrm{P} 2=\frac{500+800}{10}=130 \mathrm{Bars}
$$

Lorsque le vérin rentre le clapet vibre
$\mathrm{S}=\mathbf{5} \mathbf{\mathrm { cm } 2}$
$S=10 \mathrm{~cm} 2 \quad F=800 \mathrm{daN}$

Pression d'ouverture 100 b

Inversons le clapet et LD

La pression en A est toujours nulle le clapet ne peut pas vibrer
$\mathbf{P}=\mathbf{P} 2 \quad$ clapet ouvert
$P 2=0 \quad P=130$ bars $\quad P 2=P 3=0$

$$
P=\frac{500+800}{10}
$$

THE END

Echap

