Régulateur

三 avec clapet de non retour
Décodage du symbole

ETUDE DU CLAPET DE NON RETOUR

Clapet de non retour avec ressort simplifié

Symbole détaillé

le fluide pousse la bille et comprime le ressort
Symbole détaillé

Production \square

Symbole simplifié

Symbole détaillé
Production \square

Symbole simplifié

Symbole détaillé

Production \square
\square

ETUDE DU CLAPET DE NON RETOUR

Symbole simplifié
Plein débit

le fluide s'écoule donc de \mathbf{P} vers \mathbf{A} avec un débit réglable

Symbole détaillé
\square

ETUDE DU CLAPET DE NON RETOUR

Plein débit

L'étranglement est réglable

Une flèche sur le symbole l'indique

ETUDE DU REDUCTEUR DE DEBIT

Représentation simplifiée

Réducteur de débit
réglablecommande mécanique par galet réglage par ressort

Régulateur de débit
compensé en température simplifí

ETUDE DU REDUCTEUR DE DEBIT

Représentation détaillée

Régulateur de débit à dérivation

Régulateur de débit série à débit variable

Débit variable selon l'étranglement

le fluide s'écoule donc de \mathbf{A} vers P à plein débit par le clapet anti retour
plus le débit régulé en pointillé

étranglement plus ou moins important

Le débit dépend du réglage du bouton moleté verrouillable mécaniquement (par goupille écrou etc..)
\square
\square

ETUDE DU REDUCTEUR DE DEBIT

Débit variable selon l'étranglement

Equilibre du tiroir

le ressort maintient poussé le piston

Le ressort ne figure pas sur le symbole simplifić

Symbole détaillé

Production LGM
(*) \square
\square
\square

Piston
il ne bouche pas l'orifice entre P et A

Symbole détaillé
Production LGM

Symbole détaillé

Symbole détaillé
La flèche qui n'est pas en face indique que le fluide passe pas entre \mathbf{P} et \mathbf{A}

Le tiroir laisse passer le fluide entre P et A

Symbole détaillé

Le ressort pousse sur le tiroir

Prise d'information de pression

Une pression P3 s'exerce sur le tiroir

Production LGM

Une pression P2 s'exerce sur le tiroir

$R($ force du ressort) $+\mathbf{P} 3 \times S 2=\mathbf{P} 2 \times S 1$

Si $\mathbf{S 1}=\mathbf{S} \mathbf{2}$

constante

plein débit

ouvert en plein
$>\mathbf{P 2}=\mathbf{P} 3$

Bilan des forces

fermé en plein

THE END

Echap

