
$=1=10$

 <

Une feuille de papier de $\mathbf{1 m x} \mathbf{1 m}$ à un poids de 100 g

 un poids de 100 g exerce une force de $1 \mathbf{N}$$$
\mathbf{F}=\mathbf{m g}
$$

Exerce une pression de:

1 Pascal = $1 \mathbf{N} / \mathbf{M}^{2}$

Le Pascal est donc une unité faible aussi on utilise des multiples le "kilo Pascal": $1 \mathbf{K P a}=1000 \mathrm{~Pa}$

$$
1 \mathrm{bar}=10^{5} \mathrm{~Pa}
$$

Charge 2 tonnes

Problème:

Quelle pression doit on fournir pour soulever cette voiture qui pèse 2 tonnes avec une vérin de 40 cm de diamêtre ?

Charge $=2$ tonnes

$$
\begin{aligned}
& \mathbf{F}=\mathbf{m g} \\
& \text { sil l'on arrondi } \mathrm{g} \text { à } 10 \text { on obtient } \\
& \quad \mathbf{F}=\mathbf{2 0} 000 \text { Newton }
\end{aligned}
$$

la surface du piston est de：

$$
0,20 \times 0,20 \times 3,14=0,1256 \mathrm{~m}^{2}
$$

$\frac{20000}{0,1256}=159235,66 \mathrm{~Pa}$

$$
\text { comme } 1 \mathrm{bar}=10{ }^{5} \mathrm{~Pa}
$$

il faudra une pression de 1，59 bar

Pincipe de Pascal

Lorsqu'on appuie sur le piston la pression se transmet à tout le liquide et il jaillit par toutes les ouvertures du ballon.

Ballon crevé

On en déduit que la pression est la même en tous les points d'un fluide sous pression et au repos

ski, raquette ont une surface plus grande que les pieds pour pénétrer un couteau un outil doit être affuter (petite surface)

F=10 Tonnes

Plus la surface est grande plus la pression est petite

$S=20 \mathrm{~cm} 2$

$S=40 \mathrm{~cm} 2$
$\frac{100 \mathrm{DaN}}{40 \mathrm{~cm}^{2}}=2,5 \mathrm{bars}$

$S=80 \mathrm{~cm} 2$

utilisons le principe de Pascal
Les liquides transmettent en tous points la pression qu'ils reçoivent

On déduit de ce qui précède:

SB
SA

Influence sur le débit:

$F A=1000 \mathrm{~N}$

en descendant le piston A va chasser le liquide sous le piston B
$S=20 \mathrm{~cm} 2$
$S=4 \times 20 \mathrm{~cm} 2$

Influence sur le débit:

Ce qu'on gagne en puissance $x 4$ on le perd en déplacement celui ci est divisé par 4 le volume de liquide se réparti sous le piston B sur une surface 4 fois plus grande.

Analogie avec les réducteurs mécanique

