Pompes et compresseurs: \mathbf{P}
Actionneurs: A
Moteurs d'entrainement: M

Capteurs: S

Distributeurs: V
Autres appareils: Z ou une autre lettre

Cellule inhibition

Autrement dit:

l'absence de pression en " a " fera que la pression en "b" se retrouvera à la sortie.

Cellule inhibition

$$
S=\bar{a} \cdot b
$$

Le cercle veut dire inverse du signal a (fonction OUI)

Etat repos

Gros diamètre

Grâce à ce diamètre plus gros une petite pression pression : "3 bars" peu agir sur une grosse : "10 bars"

Petit diamètre

Le piston de la cellule bouche l'arrivée d'air La chambre du vérin n'est plus sous pression sous l'effet du ressort le vérin rentre

Tant que l'on actionne le bouton poussoir "1S5" le vérin " 1 A " reste rentré

$1 \mathrm{~S} 4=0 \quad \Rightarrow \quad 1 \mathrm{~A}=1$

$1 \mathrm{~S} 4=1 \quad \triangleleft \quad 1 \mathrm{~A}=0$

On ab int le complément de l'entrée à la sortie
Pression en entrée $=$

Pas de pression en entrée $=$ pression en sortie

Production

Chronogramme

Correspondance

Table de vérité

1 S 4
0

1

Equation Booléenne:

$1 \mathrm{~A}=1 \mathrm{~S} 4$

1 A sera à l'état 1 lorsqu'on actionnera pas 1 S 4 On dit: " 1S4 barre"

Repos

Etat $=0$

Travail

Etat $=1$

1-1Z1 \&
1-1S4

\square

Gros volume = grande quantité d'air= nécessité d'un gros débit

IL FAUT METTRE UN PRÉACTIONNEUR

Tuyau le plus court possible

GRAFCET

M.S.P

Mise
Sous
Pression

6 à 14 bars lubrifiés

Alimentation

de la puissance P.O
\square

Câblage des cellules

Règle:

Le SAP est représenté en énergie, dans la position qu'il occupe au repos

Couleurs des orifices de câblage

THE END

Action sur la touche

Echap

