Exemple $\mathbf{N}^{\circ} 1$

$$
\mathrm{S}=\mathbf{1}
$$

pas bet action sur c donne aussi $S=1$
$\mathrm{S}=1$

$S=a+(\bar{b} \bullet c)$

$$
S=\mathbf{1}
$$

Exemple $\mathbf{N}^{\mathbf{o}} \mathbf{2}$

$\bar{c} \bullet b \cdot a$
ed
\& \&

$$
\mathbf{S}=
$$

$$
\mathbf{S}=
$$

$\overline{\mathbf{c}} \bullet \mathbf{b} \cdot \mathbf{a}$

ed
\&
\&

Absence de signal à l'entrée du logigramme OU donne un sortie à 1

$\overline{\mathbf{c}} \bullet \mathbf{b} \bullet \mathbf{a}$

ed

\&
 $\&$

$$
\bar{c} \bullet b \cdot a
$$

$S=1$ chaque fois que la sortie du logigramme ET =0
C'est à dire chaque fois qu'il ya un signal à l'entrée C du ET OU que le signal à l'entrée b ou a est absent

Présence d'un signal ici
OU
\square < $11]$ $\square \square\rangle$ donne une sortie = à 1

Exemple N $^{\circ} 3$

> Une action sur a met à l'état 1 la sortie du logigramme $\mathbf{O U}$

> Le signal est réinjecté dans le logigramme OU

On a donc mémorisation de l'impulsion sur a

Il faut un signal sur b pour que
$S=1$

On a donc mémorisation de l'impulsion sur a

Tant que b sera à l'état 1 la sortie S sera égal à 1

